Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-Ethyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

### Benyong Lou,<sup>a</sup> Dan Boström<sup>b</sup> and Sitaram P. Velaga<sup>a</sup>\*

<sup>a</sup>Department of Health Science, Luleå University of Technology, Luleå S-971 87, Sweden, and <sup>b</sup>Energy Technology and Thermal Process Chemistry, Umeå University, Umeå S-901 87, Sweden

Correspondence e-mail: sitaram.velaga@ltu.se

Received 19 September 2007; accepted 4 October 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.123; data-to-parameter ratio = 16.0.

The formylation reaction of norfloxacin with *N*,*N*-dimethylformamide (DMF) gives the title compound,  $C_{17}H_{18}FN_3O_4$ . In the structure, molecules are connected *via* weak C–H···O, C–H··· $\pi$  and  $\pi$ - $\pi$  interactions [perpendicular distance 3.423 Å and centroid–centroid distance 3.8141 Å].

#### **Related literature**

For related literature, see: Barbas *et al.* (2006); Basavoju *et al.* (2006); Holmes *et al.* (1985); Li *et al.* (2005).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{17}H_{18}FN_{3}O_{4}\\ M_{r}=347.34\\ Triclinic, P\overline{1}\\ a=8.6689~(17)~\text{\AA}\\ b=9.6727~(19)~\text{\AA}\\ c=10.142~(2)~\text{\AA}\\ \alpha=73.41~(3)^{\circ}\\ \beta=81.41~(3)^{\circ} \end{array}$ 

$$\begin{split} \gamma &= 86.48 \ (3)^{\circ} \\ V &= 805.8 \ (3) \ \text{\AA}^3 \\ Z &= 2 \\ \text{Mo } & \kappa \alpha \text{ radiation} \\ \mu &= 0.11 \ \text{mm}^{-1} \\ T &= 150 \ (2) \ \text{K} \\ 0.24 \times 0.20 \times 0.16 \ \text{mm} \end{split}$$

#### Data collection

| Nonius KappaCCD diffractometer | 3635 independent reflections           |
|--------------------------------|----------------------------------------|
| Absorption correction: none    | 2913 reflections with $I > 2\sigma(I)$ |
| 5043 measured reflections      | $R_{\rm int} = 0.020$                  |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 227 parameters $wR(F^2) = 0.123$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.21$  e Å $^{-3}$ 3635 reflections $\Delta \rho_{min} = -0.25$  e Å $^{-3}$ 

#### **Table 1** Geometry (Å, °) of hydrogen bonds.

| ~ . |    |     |          |    |     |        | ~   |      |
|-----|----|-----|----------|----|-----|--------|-----|------|
| Cg1 | 1S | the | centroid | ot | the | N3/C2- | -C6 | ring |

| $D - H \cdots A$             | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|------|--------------|--------------|--------------------------------------|
| O2−H2···O3                   | 0.84 | 1.75         | 2.5315 (16)  | 154.5                                |
| C4−H4···O1 <sup>i</sup>      | 0.95 | 2.36         | 3.1872       | 145                                  |
| C10−H10···O4 <sup>ii</sup>   | 0.95 | 2.58         | 3.4323       | 149                                  |
| $C11 - H11A \cdots O4^{ii}$  | 0.99 | 2.42         | 3.3413       | 155                                  |
| $C14 - H14B \cdots O3^{iii}$ | 0.99 | 2.46         | 3.2465       | 136                                  |
| $C15 - H15B \cdots Cg1^{iv}$ | 0.99 | 2.64         | 3.3749       | 131                                  |
|                              |      |              |              |                                      |

Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, y, z - 1; (iv) 1 - x, 1 - y, 2 - z.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK/DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to 'Norbottensforskningsråd' for a grant (No. Fo 05-011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2060).

#### References

Barbas, R., Martí, F., Prohens, R. & Puigjaner, C. (2006). Cryst. Growth Des. 6, 1463–1467.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Basavoju, S., Boström, D. & Velaga, S. P. (2006). Cryst. Growth Des. 6, 2699–2708.

- Holmes, B., Brogden, R. N. & Richards, D. M. (1985). Drugs, 30, 482-513.
- Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235o2236.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4281 [doi:10.1107/S1600536807048726]

## 1-Ethyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

## B. Lou, D. Boström and S. P. Velaga

#### Comment

Norfloxacin (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3- quinolinecarboxylic acid) is a widely used fluoroquinolone antibacterial compound (Holmes *et al.*, 1985). For this compound, polymorphs, salts and cocrystals have been widely studied (Barbas *et al.*, 2006; Basavoju *et al.*, 2006). In this paper, we report the title compound (I), a derivative of norfloxacin.

The molecular structure of compound (I) (Fig.1) is similar with that of formylated ciprofloxacin reported previously (Li *et al.*, 2005). The piperazinyl ring adopts a chair conformation and the carboxylic group is involved in intramolecular hydrogen bonding with the quinolone oxygen atom (O2—H2···O3, see Table. 1).

In the crystal structure the molecules are connected *via* weak C—H···O interactions (Fig.2 and Table. 2). Additionally weak  $\pi$ - $\pi$  interactions between quinolone rings and C—H··· $\pi$  interactions between piperazinyl ring and quinolone ring might exist (Table. 2).

### Experimental

A mixture of norfloxacin (0.032 g, 0.1 mmol) and phosphoric acid (0.020 g, 0.2 mmol) was dissolved in DMF (10 ml) by heating. Afterwards, the solution was kept in air and after several days yellow crystals were obtained. The DSC showed one sharp endothermic peak at 562 K attributed to the melting transition.

## Refinement

H atoms were calculated in geometrically idealized positions (OH allowed to rotate but not to tip)with C—H = 0.95–0.99 Å and O—H = 0.84 Å and were refined isotropic with  $U_{iso}(H) = 1.2Ueq(C,O)$  or 1.5Ueq(C) for methyl C atom using a riding model.

## Figures



Fig. 1. *ORTEP* plot of compound (I) with 30% thermal ellipsoids. The dashed line indicate hydrogen bonding.



Fig. 2. Packing diagram of compound (I) viewed along b axis. The dashed lines indicate C—H···O interactions.

## 1-Ethyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline- 3-carboxylic acid

| Crystal data                                                   |                                              |
|----------------------------------------------------------------|----------------------------------------------|
| C <sub>17</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>4</sub> | Z = 2                                        |
| $M_r = 347.34$                                                 | $F_{000} = 364$                              |
| Triclinic, P1                                                  | $D_{\rm x} = 1.432 {\rm ~Mg~m}^{-3}$         |
| Hall symbol: -P 1                                              | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| <i>a</i> = 8.6689 (17) Å                                       | Cell parameters from 7249 reflections        |
| <i>b</i> = 9.6727 (19) Å                                       | $\theta = 2.6 - 27.5^{\circ}$                |
| c = 10.142 (2) Å                                               | $\mu = 0.11 \text{ mm}^{-1}$                 |
| $\alpha = 73.41 \ (3)^{\circ}$                                 | T = 150 (2)  K                               |
| $\beta = 81.41 \ (3)^{\circ}$                                  | Block, yellow                                |
| $\gamma = 86.48 \ (3)^{\circ}$                                 | $0.24 \times 0.20 \times 0.16 \text{ mm}$    |
| $V = 805.8 (3) \text{ Å}^3$                                    |                                              |

#### Data collection

| Nonius KappaCCD<br>diffractometer              | 3635 independent reflections           |
|------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube       | 2913 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                        | $R_{\rm int} = 0.020$                  |
| Detector resolution: 9 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 27.4^{\circ}$   |
| T = 150(2)  K                                  | $\theta_{\min} = 3.2^{\circ}$          |
| CCD scans                                      | $h = -11 \rightarrow 11$               |
| Absorption correction: none                    | $k = -11 \rightarrow 12$               |
| 6043 measured reflections                      | $l = -13 \rightarrow 13$               |
|                                                |                                        |

### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.043$ | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.123$               | $w = 1/[\sigma^2(F_o^2) + (0.0613P)^2 + 0.2204P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.05                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 3635 reflections                | $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$                           |

227 parameters

 $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$ 

Primary atom site location: structure-invariant direct methods Extinction correction: none

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|      | x            | У            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| F1   | 0.10241 (9)  | 0.66737 (10) | 1.00486 (9)  | 0.0311 (2)                |
| O3   | 0.45388 (12) | 0.85673 (12) | 1.26189 (11) | 0.0311 (3)                |
| 01   | 0.91842 (14) | 0.96327 (14) | 1.19206 (12) | 0.0404 (3)                |
| N3   | 0.72533 (13) | 0.81858 (12) | 0.90353 (12) | 0.0212 (2)                |
| C2   | 0.69908 (16) | 0.88460 (14) | 1.11704 (14) | 0.0216 (3)                |
| O2   | 0.68961 (14) | 0.94959 (13) | 1.32791 (11) | 0.0342 (3)                |
| H2   | 0.5985       | 0.9248       | 1.3277       | 0.041*                    |
| C10  | 0.50281 (15) | 0.72728 (15) | 0.83179 (14) | 0.0215 (3)                |
| H10  | 0.5663       | 0.7181       | 0.7498       | 0.026*                    |
| C6   | 0.47421 (15) | 0.79129 (14) | 1.05125 (13) | 0.0204 (3)                |
| C5   | 0.56759 (15) | 0.77973 (14) | 0.92778 (13) | 0.0199 (3)                |
| C7   | 0.31595 (16) | 0.75016 (15) | 1.07694 (14) | 0.0233 (3)                |
| H7   | 0.2517       | 0.7564       | 1.1596       | 0.028*                    |
| N2   | 0.27120 (13) | 0.64380 (13) | 0.76203 (11) | 0.0220 (3)                |
| C3   | 0.53768 (16) | 0.84585 (14) | 1.15125 (14) | 0.0220 (3)                |
| C9   | 0.34614 (15) | 0.68881 (14) | 0.85666 (14) | 0.0208 (3)                |
| C8   | 0.25720 (15) | 0.70150 (15) | 0.98143 (14) | 0.0229 (3)                |
| C1   | 0.77959 (18) | 0.93698 (16) | 1.21315 (15) | 0.0272 (3)                |
| C16  | 0.10726 (16) | 0.46445 (15) | 0.72264 (14) | 0.0238 (3)                |
| H16A | 0.0806       | 0.3610       | 0.7525       | 0.029*                    |
| H16B | 0.0098       | 0.5216       | 0.7329       | 0.029*                    |
| C4   | 0.78423 (16) | 0.86968 (14) | 0.99515 (14) | 0.0226 (3)                |
| H4   | 0.8904       | 0.8971       | 0.9750       | 0.027*                    |
| C13  | 0.35023 (17) | 0.67645 (17) | 0.61811 (14) | 0.0274 (3)                |
| H13A | 0.4439       | 0.6133       | 0.6131       | 0.033*                    |
| H13B | 0.3839       | 0.7780       | 0.5861       | 0.033*                    |
| C11  | 0.83052 (15) | 0.80245 (16) | 0.77815 (15) | 0.0259 (3)                |
| H11A | 0.8088       | 0.7100       | 0.7615       | 0.031*                    |
| H11B | 0.9401       | 0.7982       | 0.7962       | 0.031*                    |
| C14  | 0.23709 (18) | 0.65157 (17) | 0.52533 (15) | 0.0296 (3)                |
|      |              |              |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H14A | 0.1485       | 0.7214       | 0.5236       | 0.036*     |
|------|--------------|--------------|--------------|------------|
| H14B | 0.2911       | 0.6673       | 0.4292       | 0.036*     |
| C15  | 0.22025 (16) | 0.49259 (15) | 0.81329 (14) | 0.0243 (3) |
| H15A | 0.1685       | 0.4732       | 0.9105       | 0.029*     |
| H15B | 0.3122       | 0.4268       | 0.8117       | 0.029*     |
| C12  | 0.81170 (18) | 0.92472 (19) | 0.64838 (15) | 0.0330 (4) |
| H12A | 0.7042       | 0.9279       | 0.6282       | 0.050*     |
| H12B | 0.8838       | 0.9087       | 0.5698       | 0.050*     |
| H12C | 0.8349       | 1.0165       | 0.6634       | 0.050*     |
| O4   | 0.25308 (14) | 0.44029 (14) | 0.37679 (12) | 0.0406 (3) |
| N1   | 0.17883 (14) | 0.50451 (13) | 0.57763 (12) | 0.0256 (3) |
| C17  | 0.19313 (17) | 0.41258 (17) | 0.49896 (16) | 0.0294 (3) |
| H17  | 0.1537       | 0.3184       | 0.5412       | 0.035*     |
|      |              |              |              |            |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|-------------|-------------|-------------|
| F1  | 0.0184 (4) | 0.0461 (5) | 0.0299 (5) | -0.0092 (4) | 0.0009 (3)  | -0.0130 (4) |
| O3  | 0.0297 (5) | 0.0413 (6) | 0.0251 (5) | -0.0075 (5) | 0.0026 (4)  | -0.0155 (5) |
| 01  | 0.0342 (6) | 0.0570 (8) | 0.0371 (6) | -0.0161 (5) | -0.0073 (5) | -0.0199 (6) |
| N3  | 0.0181 (5) | 0.0254 (6) | 0.0211 (5) | -0.0023 (4) | -0.0024 (4) | -0.0077 (4) |
| C2  | 0.0241 (7) | 0.0191 (6) | 0.0222 (6) | -0.0022 (5) | -0.0058 (5) | -0.0052 (5) |
| O2  | 0.0379 (6) | 0.0423 (6) | 0.0280 (6) | -0.0089 (5) | -0.0049 (5) | -0.0168 (5) |
| C10 | 0.0196 (6) | 0.0243 (7) | 0.0204 (6) | -0.0029 (5) | -0.0016 (5) | -0.0061 (5) |
| C6  | 0.0211 (6) | 0.0190 (6) | 0.0204 (6) | -0.0008 (5) | -0.0037 (5) | -0.0042 (5) |
| C5  | 0.0179 (6) | 0.0199 (6) | 0.0211 (6) | -0.0009 (5) | -0.0032 (5) | -0.0040 (5) |
| C7  | 0.0221 (7) | 0.0264 (7) | 0.0200 (6) | -0.0027 (5) | -0.0005 (5) | -0.0051 (5) |
| N2  | 0.0221 (5) | 0.0240 (6) | 0.0194 (5) | -0.0062 (4) | -0.0034 (4) | -0.0041 (4) |
| C3  | 0.0262 (7) | 0.0182 (6) | 0.0210 (6) | -0.0008 (5) | -0.0036 (5) | -0.0042 (5) |
| C9  | 0.0212 (6) | 0.0205 (6) | 0.0204 (6) | -0.0019 (5) | -0.0051 (5) | -0.0039 (5) |
| C8  | 0.0165 (6) | 0.0259 (7) | 0.0244 (7) | -0.0042 (5) | -0.0017 (5) | -0.0040 (5) |
| C1  | 0.0318 (7) | 0.0265 (7) | 0.0246 (7) | -0.0047 (6) | -0.0067 (6) | -0.0069 (6) |
| C16 | 0.0226 (6) | 0.0245 (7) | 0.0243 (7) | -0.0050 (5) | -0.0030 (5) | -0.0062 (5) |
| C4  | 0.0214 (6) | 0.0209 (6) | 0.0260 (7) | -0.0029 (5) | -0.0056 (5) | -0.0057 (5) |
| C13 | 0.0270 (7) | 0.0334 (8) | 0.0218 (7) | -0.0117 (6) | -0.0007 (6) | -0.0070 (6) |
| C11 | 0.0172 (6) | 0.0354 (8) | 0.0292 (7) | -0.0026 (5) | -0.0005 (5) | -0.0168 (6) |
| C14 | 0.0345 (8) | 0.0324 (8) | 0.0223 (7) | -0.0110 (6) | -0.0059 (6) | -0.0050 (6) |
| C15 | 0.0254 (7) | 0.0218 (7) | 0.0254 (7) | -0.0044 (5) | -0.0059 (5) | -0.0041 (5) |
| C12 | 0.0295 (7) | 0.0458 (9) | 0.0241 (7) | -0.0067 (7) | 0.0020 (6)  | -0.0120 (6) |
| O4  | 0.0386 (6) | 0.0569 (8) | 0.0344 (6) | -0.0012 (6) | -0.0048 (5) | -0.0258 (6) |
| N1  | 0.0249 (6) | 0.0290 (6) | 0.0251 (6) | -0.0057 (5) | -0.0037 (5) | -0.0098 (5) |
| C17 | 0.0244 (7) | 0.0363 (8) | 0.0328 (8) | 0.0005 (6)  | -0.0095 (6) | -0.0155 (6) |

# Geometric parameters (Å, °)

| F1    | 1.3713 (15) | C16—N1   | 1.4594 (18) |
|-------|-------------|----------|-------------|
| O3—C3 | 1.2699 (17) | C16—C15  | 1.5243 (19) |
| 01—C1 | 1.2201 (19) | C16—H16A | 0.9900      |
| N3—C4 | 1.3428 (17) | С16—Н16В | 0.9900      |

| N3—C5      | 1.4076 (17) | C4—H4         | 0.9500      |
|------------|-------------|---------------|-------------|
| N3—C11     | 1.4909 (17) | C13—C14       | 1.529 (2)   |
| C2—C4      | 1.3822 (19) | C13—H13A      | 0.9900      |
| C2—C3      | 1.4365 (19) | C13—H13B      | 0.9900      |
| C2—C1      | 1.4908 (19) | C11—C12       | 1.520 (2)   |
| O2—C1      | 1.3328 (18) | C11—H11A      | 0.9900      |
| O2—H2      | 0.8400      | C11—H11B      | 0.9900      |
| С10—С9     | 1.3974 (18) | C14—N1        | 1.4619 (19) |
| C10—C5     | 1.4146 (19) | C14—H14A      | 0.9900      |
| С10—Н10    | 0.9500      | C14—H14B      | 0.9900      |
| C6—C5      | 1.4150 (18) | C15—H15A      | 0.9900      |
| C6—C7      | 1.4175 (19) | C15—H15B      | 0.9900      |
| C6—C3      | 1.4553 (19) | C12—H12A      | 0.9800      |
| С7—С8      | 1.363 (2)   | C12—H12B      | 0.9800      |
| С7—Н7      | 0.9500      | C12—H12C      | 0.9800      |
| N2—C9      | 1.4116 (17) | O4—C17        | 1.2298 (19) |
| N2—C13     | 1.4712 (17) | N1—C17        | 1.3435 (19) |
| N2—C15     | 1.4768 (17) | C17—H17       | 0.9500      |
| С9—С8      | 1.4130 (19) |               |             |
| C4—N3—C5   | 119.98 (11) | N3—C4—C2      | 123.71 (12) |
| C4—N3—C11  | 118.71 (11) | N3—C4—H4      | 118.1       |
| C5—N3—C11  | 121.30 (11) | C2—C4—H4      | 118.1       |
| C4—C2—C3   | 120.16 (12) | N2-C13-C14    | 108.92 (11) |
| C4—C2—C1   | 118.61 (12) | N2—C13—H13A   | 109.9       |
| C3—C2—C1   | 121.20 (12) | C14—C13—H13A  | 109.9       |
| C1—O2—H2   | 109.5       | N2—C13—H13B   | 109.9       |
| C9—C10—C5  | 120.53 (12) | C14—C13—H13B  | 109.9       |
| С9—С10—Н10 | 119.7       | H13A—C13—H13B | 108.3       |
| C5-C10-H10 | 119.7       | N3—C11—C12    | 113.11 (12) |
| C5—C6—C7   | 119.28 (12) | N3—C11—H11A   | 109.0       |
| C5—C6—C3   | 121.07 (12) | C12—C11—H11A  | 109.0       |
| C7—C6—C3   | 119.66 (12) | N3—C11—H11B   | 109.0       |
| N3—C5—C10  | 120.87 (12) | C12-C11-H11B  | 109.0       |
| N3—C5—C6   | 119.15 (12) | H11A—C11—H11B | 107.8       |
| C10—C5—C6  | 119.97 (12) | N1-C14-C13    | 110.16 (12) |
| C8—C7—C6   | 119.10 (12) | N1-C14-H14A   | 109.6       |
| С8—С7—Н7   | 120.5       | C13—C14—H14A  | 109.6       |
| С6—С7—Н7   | 120.5       | N1-C14-H14B   | 109.6       |
| C9—N2—C13  | 116.48 (11) | C13—C14—H14B  | 109.6       |
| C9—N2—C15  | 113.88 (11) | H14A—C14—H14B | 108.1       |
| C13—N2—C15 | 111.25 (11) | N2-C15-C16    | 110.17 (11) |
| O3—C3—C2   | 122.95 (12) | N2-C15-H15A   | 109.6       |
| O3—C3—C6   | 121.14 (12) | C16—C15—H15A  | 109.6       |
| C2—C3—C6   | 115.91 (12) | N2—C15—H15B   | 109.6       |
| C10—C9—N2  | 123.69 (12) | C16—C15—H15B  | 109.6       |
| C10—C9—C8  | 117.67 (12) | H15A—C15—H15B | 108.1       |
| N2—C9—C8   | 118.60 (12) | C11—C12—H12A  | 109.5       |
| C7—C8—F1   | 118.55 (12) | C11—C12—H12B  | 109.5       |
| С7—С8—С9   | 123.45 (12) | H12A—C12—H12B | 109.5       |

# supplementary materials

| F1—C8—C9      | 117.96 (12) | C11—C12—H12C  | 109.5       |
|---------------|-------------|---------------|-------------|
| 01—C1—O2      | 121.46 (13) | H12A—C12—H12C | 109.5       |
| O1—C1—C2      | 123.40 (13) | H12B—C12—H12C | 109.5       |
| O2—C1—C2      | 115.11 (12) | C17—N1—C16    | 122.70 (12) |
| N1—C16—C15    | 109.65 (11) | C17—N1—C14    | 122.50 (13) |
| N1—C16—H16A   | 109.7       | C16—N1—C14    | 114.79 (11) |
| C15—C16—H16A  | 109.7       | O4—C17—N1     | 125.40 (15) |
| N1—C16—H16B   | 109.7       | O4—C17—H17    | 117.3       |
| C15—C16—H16B  | 109.7       | N1—C17—H17    | 117.3       |
| H16A—C16—H16B | 108.2       |               |             |
|               |             |               |             |

Hydrogen-bond geometry (Å, °)

| D—H···A    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| O2—H2···O3 | 0.84        | 1.75         | 2.5315 (16)  | 155                                                                        |

Geometry (Å, °) of hydrogen bonds and  $\pi$ - $\pi$  interactions

| Cg1 is the centroid of     | the N3/C2–C6 ring. |                           |                     |                 |
|----------------------------|--------------------|---------------------------|---------------------|-----------------|
| D-H…A                      | D-H(Å)             | H…A(Å)                    | D…A(Å)              | D-H···A(°)      |
| O2—H2···O3                 | 0.84               | 1.75                      | 2.5315 (16)         | 154.5           |
| C4-H4…O1 <sup>i</sup>      | 0.95               | 2.36                      | 3.1872              | 145             |
| C10-H10…O4 <sup>ii</sup>   | 0.95               | 2.58                      | 3.4323              | 149             |
| C11-H11A…O4 <sup>ii</sup>  | 0.99               | 2.42                      | 3.3413              | 155             |
| C14-H14B…O3 <sup>iii</sup> | 0.99               | 2.46                      | 3.2465              | 136             |
| C15-H15B…Cg1 <sup>iv</sup> | 0.99               | 2.64                      | 3.3749              | 131             |
| $Cg1\cdots Cg1^{v}$        |                    | 3.423 <sup><i>a</i></sup> | 3.8141 <sup>b</sup> | 26 <sup>c</sup> |

Notes: (a) Perpendicular distance of rings. (b) Distance between ring centroids. (c) Angle between the  $Cg1 \rightarrow Cg1^{\vee}$  vector and the normal to the plane of  $Cg1^{\vee}$ .

Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, y, z - 1; (iv) 1 - x, 1 - y, 2 - z; (v) 1 - x, 2 - y, 2 - z



Fig. 1



